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Abstract: We present a brief survey of vertical transistor devices fabricated by the cleaved-

edge overgrowth technique. Different device types are realized using different transistor 

substrates grown by molecular beam epitaxy. These substrates mainly vary in the layer 

sequence and thickness between the source/drain contacts. Common to all designs is the 

vertical gate structure overgrown on a cleavage plane of the substrates. By biasing the gate a 

two-dimensional electron system of tunable density is induced between source/drain. We 

study the DC transport properties of long-channel (source-drain distance ~1 µm) as well as 

short-channel (source-drain distance ~50 nm) devices. Also the choice of the source/drain 

isolation (a superlattice or a p+-δ-doping or a hetero barrier) affects the characteristic device 

behavior. 
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1. Introduction 

Over the last decade the cleaved-edge overgrowth technique, first successfully demonstrated 

by Pfeiffer et al. [1], remained a source of novel sample structures with highest crystalline 

quality. The method relies on subsequent molecular beam epitaxy growth steps in different 

orthogonal crystal directions, which are created by in-situ cleaving the sample. Especially the 

electrical and optical investigation of low-dimensional electron systems, like quantum wires 

[2,3] (Luttinger liquid behavior) or quantum dots [4] (coupled artificial atoms) tailored with 

atomic precision, took advantage of the technique. Also new possibilities to study two-

dimensional electron transport opened up, see for example [5] (tunneling into fractional 

quantum Hall edges) and [6] (periodically modulated two-dimensional electrons). 

In this paper we focus on vertical transistor devices realized by cleaved-edge overgrowth, that 

are subject to DC transport studies dependent on several design parameters (e.g. channel 

length and thickness). We compare several concepts to insulate source/drain and thus guide 

electrons in the channel with each other, which includes superlattice, p+-δ-doped and hetero 

source/drain barriers. 

2. Experimental 

We employ molecular beam epitaxy in the lattice-matched AlGaAs/GaAs material system to 

grow the different transistor substrates on semi-insulating (001)-GaAs wafers. All samples 

have a insulating potential barrier sandwiched between two 1 µm thick n+-GaAs source/drain 

contacts in common; only the particular type of barrier as shown in Fig. 1 varies. We involve 

an AlGaAs/GaAs superlattice, a simple AlGaAs hetero barrier, a p+-δ-doped GaAs barrier and 

a GaAs embedded AlGaAs hetero barrier in our investigation. For details on the grown 

structure refer to the corresponding part in the results section. The geometric channel length L 

of the transistor is defined by the thickness of the grown barrier, which can be controlled 

nearly within one monolayer. The device is denoted as long-channel if the source-drain 

distance is L~1 µm and as short-channel for L~50 nm in our case. Pieces of the transistor 
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substrates are returned into growth chamber and cleaved under ultra-high vacuum conditions. 

Immediately afterwards we overgrow the freshly exposed (110) cleavage plane with a layer 

sequence common to all samples. At first the i-GaAs electron channel with a thickness QW is 

deposited, followed by an AlAs gate barrier and the n+-GaAs gate contact. After the growth a 

mesa is etched on the (100) surface and ohmic Pd/Ge/Au contacts are attached to all 

terminals. 

We characterize all samples by measuring the current-voltage relation while the gate is 

biased. In our setup either the top (short channel device) or bottom (long channel device) 

contact is grounded and the source-drain voltage is applied to the remaining one. The source-

drain current is measured while simultaneously the voltage drop across the channel is 

recorded in 4-point-probe configuration. 

3. Results 

The output characteristics of two long-channel devices are presented in Fig. 2, which both 

have a channel length of L=3 µm and thickness QW=20 nm. Fig. 2(a) shows the results for a 

device with a superlattice used as barrier (Fig. 1(a) ), which has a 15 nm period consisting of 

12 nm GaAs and 3 nm Al0.3Ga0.7As. Fig. 2(b) displays data of a transistor with bulk 

Al0.06Ga0.94As barrier (Fig. 1(b) ), which matches the mean Al-content of the superlattice. In 

experiment we set the sample temperature to 800 mK to explore quantum effects in the DC 

transport. 

The I-V curves of the superlattice device exhibit a strong slope for source-drain voltages up to 

�75 mV in the linear regime and a nearly perfect saturation for voltages greater than 

�150 mV. Around 100 mV source-drain voltage the I-V traces feature a negative differential 

resistance region. The superlattice acts as a barrier between source-drain, but also modifies 

transport in the electron channel by the remote potential. Thus the two-dimensional electron 

system in the channel undergoes a weak periodic density modulation, which causes back 

folding of the electrons band structure. In an electrical field these electrons are accelerated 
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towards the Brioullin zone boundary in k-space and eventually become Bragg reflected, 

which leads to electron localization and negative differential resistance. We refer to Ref. [7] 

for an extensive discussion focusing on the superlattice influence. In comparison the device 

including the simple hetero barrier shows a weaker slope in the linear region and a small rise 

with source–drain voltage in saturation regime. We find no signs of a negative differential 

resistance, since no periodic density modulation is apparent. To shortly sum it up, the output 

behavior of the long-channel devices can be improved with respect to the saturation and linear 

regime by choosing a superlattice barrier. 

Measurements of vertical short-channel transistors with a 6.1012 cm-2 planar p+-δ-doped 

barrier in a 100 nm GaAs matrix (Fig. 1(c) ) are depicted in Fig. 3. Electrostatic depletion in 

the contact regions flanking the p+-δ-spike leads to an effective channel length Leff=70 nm, 

which can be obtained by examining the source-drain capacitance. We present data from 

QW=40 nm thick devices at different temperatures of 4.2 K in Fig. 3(a) and 300 K in 

Fig. 3(b). 

The output characteristic shows typical sub threshold behavior indicated by the diodic curves 

at both temperatures, much like in similar Si-based devices [8]. For gate voltages below 0.7 V 

the vertical transistors stay in the turned-off regime; above that value gate leakage becomes 

intolerably high. At low temperature we find that the device behavior is dominated by punch-

through of electrons. At positive drain voltage the effective barrier height in the channel, also 

created by electrostatic depletion of the p+-δ-doping, is reduced and electrons can travel from 

source to drain by tunneling. At higher temperatures an additional thermally activated 

tunneling current appears across the channel barrier. Both contributions can be recognized in 

Fig. 3, as the diodic curves shift either with gate voltage at constant temperature or vice versa. 

Although this design type is fully room temperature operable, it lacks the turned-on regime 

yet. In order to solve this the depletion of the p+-δ-spike within the channel has to be 

compensated by simply n+-δ-doping the channel or the gate barrier near the channel. 
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In Fig. 4 we show experimental data at 4.2 K of another short-channel device including an 

50 nm Al0.45Ga0.55As hetero barrier embedded in 50 nm GaAs (Fig. 1(d) ) on each side. In this 

case the geometrical channel length is L=50 nm and the thickness is QW=20 nm in Fig. 4(a) 

respectively QW=40 nm in Fig. 4(b). 

Above a small positive gate voltage of approx. 50 mV this device type operates in the turned-

on transistor state and the current-voltage relation possesses a quasi-saturated region. The loss 

of complete saturation is a typical short-channel effect, that emerges when shrinking down the 

source-drain distance. This experimental finding agrees well with non-equilibrium numerical 

simulations performed for this special device configuration [9]. A closer look at the onset of 

the quasi-saturation region reveals that it shifts linearly to higher source-drain values by 

increasing the gate voltage. This behavior is different from that of the long-channel device in 

Fig. 2, where the onset nearly stays at a constant value, or to the conventional MOSFET 

device, where the onset follows a square law. When the channel thickness is raised, even 

though the channel cross section is increased, we observe an unexpected decrease in the 

average source-drain current. We explain this observation by additional serial resistances 

stemming from the contact-channel coupling as the electron gas is located further away from 

the contacts at larger channel thicknesses. In order to minimize the present short-channel 

effects the distance between the n+-contact regions and the gated short-channel have to be 

increased. By that means a design type with a short gate attached to a long-channel [10] is 

more favorable than a short-channel covered the whole distance by a gate. 

4. Conclusion 

In summary we have shown that a variety of vertical transistor devices can be fabricated using 

the cleaved-edge overgrowth method. Common to all transistors is the gate structure allowing 

us to induce a two-dimensional electron system of tunable density connecting source/drain. 

Devices with long electron channels (L~1 µm) possess overall normal transistor operation. 

Additionally the superlattice device type exhibits a negative differential resistance in the 
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output characteristics. In comparison the superlattice type has an improved performance in 

comparison to the simple hetero barrier type. Short-channel (L~50 nm) vertical transistors 

were realized with planar p+-δ-doping and embedded hetero barriers. The p+-δ-doped devices 

were fully room temperature operable, but nevertheless only in the turned-off regime yet. The 

transistors using a hetero barrier clearly exhibit short-channel effects in the low-temperature I-

V-traces, a problem which can only be overcome by a major design change. 

We gratefully acknowledge the financial support by the Bundesministerium für Bildung, 

Wissenschaft, Forschung und Technologie through project 01BM912 and the Deutsche 

Forschungsgemeinschaft within project SFB348. 
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Figure captions: 

 

Fig. 1 : Sample structure of a vertical transistor fabricated by the cleaved-edge overgrowth 

method. The different design types vary in the section marked by the circle. Following kinds 

of source/drain separation layers are under investigation: (a) a AlGaAs/GaAs superlattice, (b) 

a simple AlGaAs hetero barrier, (c) a p+-δ-doped GaAs separator and (d) an embedded 

AlGaAs hetero barrier. 

 

Fig. 2 : Output traces of a transistor device with (a) a superlattice in comparison with (b) a 

simple hetero barrier. Both transistors have a channel length of L=3 µm and thickness of 

QW=20 nm. The superlattice consists of 12 nm GaAs and 3 nm Al0.3Ga0.7As per 15 nm 

period. The simple Al0.06Ga0.94As hetero barrier matches the average Al-content of the 

superlattice. 

 

Fig. 3 : Typical device characteristics of a vertical transistor with a 6.1012 cm-2 p+-δ-doped 

barrier at (a) 4.2 K or (b) 300 K. The channel possesses an effective length of Leff=70 nm and 

a thickness of QW=40 nm.  

 

Fig.4 : Current-voltage relation of samples equipped with an Al0.45Ga0.55As hetero barrier at 

4.2 K. The channel is (a) QW=20 nm or respectively (b) QW=40 nm thick at constant 

geometric length of L=50 nm. 
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