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ABSTRACT

In this work we present the �rst working focal plane analog VLSI sensor for the spatially resolved computation
of the 2-D motion �eld based on temporal and spatial derivatives. Using an adaptive CMOS photoreceptor the
temporal derivative and a function of the spatial derivative of the local light intensity are computed. By multiplying
these values separately for both spatial dimensions a vector is obtained, which points in the direction of the normal
optical 
ow and whose magnitude for a given stimulus is proportional to its velocity. The circuit consists of only 31
MOSFETs and three capacitors per pixel. We present measurement data from fully functional prototype 2-D pixel
arrays for natural stimuli of varying velocity, orientation, contrast and spatial frequency. High direction selectivity
even for very low contrast input is demonstrated. As application it is shown how the pixel-parallel architecture
of the sensor can favourably be used for real-time computation of the focus of expansion and the axis of rotation.
Because of its compactness, its robust operation and its uncritical handling the sensor might be favourably applied
in industrial applications.

Keywords: analog VLSI, motion sensor, smart vision sensor, parallel image processing, real-time computation,
optical 
ow, machine vision, robot vision, focus of expansion, axis of rotation

1. INTRODUCTION

The analysis of moving scenes can yield a wealth of information, much beyond what can be obtained from one
static image. Including the time domain into image processing allows one to tackle tasks such as �gure background
segmentation, object tracking and projection of its trajectory, obstacle avoidance, ego-motion estimation, recovering
the 3-D velocity and 3-D structure of the viewed scene, and determining the heading direction, i.e. the focus of
expansion. The �rst step to solving these tasks is often to compute the so called optical 
ow �eld, which is an
estimate of the perspective projection on the image plane of the 3-D velocity �eld.

For determining the optical 
ow �eld on serial computers a tremendous body of literature exists; cf. the compar-
ative study of Barron et. al1 and references therein. It has proven di�cult, though, to obtain the optical 
ow �eld
in real-time, unless powerful computers are used. Additionally computing times scale unfavourably with the image
size and usually increase with O(N2), where N�N is the amount of image pixels.

In the last decade a new approach to motion computation has been paid attention to. Progress in VLSI technology
for the �rst time allowed to implement motion detection algorithms on a custom designed chip2�12 . Using di�erent
algorithms, these motion sensors share the following features:

� They are single-chip sensors, i.e. the photoreceptors and the motion computation circuitry sit in the focal
plane. Very compact motion detection systems are therefore possible.

� They are pixel-parallel implementations, i.e. motion computation is performed in synchrony by all pixels. This
means that the focal plane arrays scale favourably with image size without losing their real-time performance.
For achieving higher resolutions in principle just a larger amount of pixel has to be laid out.

� No clock is required for motion computation. Since image irradiance is by nature continuous, an asynchronous
circuit implementation is well suited to motion computation and avoids the negative e�ect of temporal aliasing
otherwise encountered in computer implementations.

� In contrast to digital implementations, here transistors are used as analog computing elements. This allows for
compact implementation of complex functions and �lters.

Send correspondence to R.A.D. email Deutschmann@wsi.tu-muenchen.de, WWW http://maitai.wsi.tu-muenchen.de/deutschmann



� A drawback of analog VLSI motion sensors is their low accuracy, partly because there is no signal restoration
as in digital circuits. Given that the input to any vision system is noisy, the additional noise introduced by the
analog circuitry does not a�ect the motion computation seriously in many cases.

Existing analog VLSI motion sensors can be classi�ed into token-based and gradient-based sensors. Token-based
sensors generally look for features, such as edges, in the visual �eld and track them over time. Kramer et. al.
have reported 1-D velocity sensors based on edge tracking7;8 which operate robustly over a wide range of input
parameters. Based on a similar feature extraction stage Deutschmann et. al.10 have reported two sensors that
compute the direction-of-motion vector �eld in a 2-D array, but are not sensitive to stimulus velocity. Etienne-
Cummings et. al.6 have reported on a 5�5 sensor, the scaling of which to large arrays might be di�cult. The authors
propose a multi-chip system.

On the other hand gradient-based sensors use local temporal and spatial derivatives of the light intensity to
compute motion. An early design of Tanner and Mead2 tried to implement the gradient constraint equation dI=dt = 0
through a feedback mechanism. The chip could only solve for one global 2-D velocity vector and showed poor
performance. A similar circuit was used later to compute motion in 1-D.13 A working redesign of the Tanner/Mead
chip in 1-D has been reported recently.14 Deutschmann et. al.12 implemented straightforwardly the 1-D gradient
model, which solves the gradient constraint equation and yields velocity independent of spatial frequency and contrast
by a division of temporal and spatial derivatives. In 2-D, though, the algorithm would yield a large pixel size. A very
compact 2-D pixel that makes implicit use of temporal derivatives was reported by Benson and Delbr�uck.15 Their
sensor, though, is tuned to a �xed velocity and is sensitive only to ON-edges.

In summary there exist a series of quite powerful 1-D motion sensors to choose from, some of which represent
velocity unambiguously. The choice amongst single chip 2-D sensors is small, and dense pixel arrays have been
reported only for direction-of-motion or velocity-tuned sensors. Our goal was to develop a 2-D motion sensor for
applications that require the sensor output to be monotonically increasing with stimulus velocity. Additionally the
motion vector orientation should be parallel to the normal optical 
ow. The sensor should be scalable to high density
arrays on a single chip, and should be easy to use due to a small number of biasing voltages, none of them being
overly critical. We achieved our goal with the motion sensor presented in this paper, called \Gradient2d" sensor,
which is based on Horiuchi's work16 on a biologically inspired oculomotor system.

The paper is organised in the following way: In the next section we will introduce the motion algorithm and
its analog VLSI implementation. In the following sections we will present experimental results characterising the
elementary motion detector; �rst the time-dependent output, then the output dependence on stimulus velocity,
orientation, contrast and spatial frequency. Subsequently we will demonstrate the high direction selectivity of the
sensor even for very low stimulus contrasts. In the last part of the paper we will show 15�15 motion vector �elds
of the entire 2-D pixel array and use its pixel-parallel architecture to compute the focus of expansion and axis of
rotation of a real-world scene in real time.

2. ALGORITHM AND IMPLEMENTATION

We will derive an equation which relates the change in image brightness at a point in the focal plane to the motion
of the brightness pattern. A unique solution for the optical 
ow will be obtained with the additional constraint of
normal 
ow. We will show how to simplify this solution to make it suitable for implementation in analog VLSI,
maintaining normal motion 
ow vectors.

Let the image brightness at the point (x; y) in the focal plane at time t be denoted by I(x; y; t). If the brightness
pattern stems from a solid object and moves, the brightness of a particular point in the pattern projected on the
focal plane is constant. Using the chain rule of di�erentiation we obtain

dI(x; y; t)

dt
= 0 )

@I

@x
vx +

@I

@y
vy +

@I

@t
= 0 (1)

for the two unknown velocity components vx = @x=@t and vy = @y=@t. An additional constraint is required for a
unique solution. Several constraints have been suggested in the literature, for example the smoothness of the optical

ow �eld.17 This approach is problematic because discontinuities in the optical 
ow �eld, on which segmentation
from motion algorithms rely, are attenuated. Therefore we con�ne the 
ow vectors to be normal to the local image



brightness distribution (normal 
ow). In mathematical terms Ix=vx = Iy=vy, where Ix = @I=@x and Iy = @I=@y.
We thus obtain for the normal velocity �eld (vx; vy)

vx = �
Ix It

I2x + I2y
; vy = �

Iy It
I2x + I2y

: (2)

Although these equations could directly be implemented in analog VLSI,12 this attempt is tricky because a) the
result is not de�ned for vanishing contrast and b) both spatial dimensions are coupled. We observe that the sum
I2x + I2y is independent of the stimulus orientation and that it can be considered as con�dence measure for the local
velocity computation. We therefore weight (multiply) vx and vy by this sum and de�ne a new motion vector �eld
(ux; uy)

ux = u0o It Ix ; uy = u0o It Iy ; u0o 2 IR const: (3)

Up to now we derived a normal 
ow �eld that simply consists of a product of temporal and spatial derivatives, which
lends itself easily for implementation in analog VLSI. For a given stimulus the length of the motion vector (ux; uy)
still increases linearly with velocity, but it is now dependent on the stimulus contrast.

Figure 1. Schematic of the Gradient2d sensor pixel

The schematic of the actual implementation is shown in Figure 1. The light intensity is transduced to a voltage
signal Vpr by Delbr�uck's adaptive photoreceptor.

18 The photoreceptor signal is transmitted to all four neighbouring
pixels, and is locally used for computing the temporal derivative. The temporal derivative circuit is constructed
from a transconductance ampli�er with negative feedback which copies the photoreceptor voltage onto a capacitor
through a bidirectional source follower. The current required to drive the capacitor voltage is ampli�ed by a tilted
current mirror (Vn slightly above GND and Vp slightly below Vdd). The temporal derivative signal is represented
by the voltages V +

TD and V �

TD , separately for increasing and decreasing light intensities, respectively. The circuit has
the advantage of having low o�set current in steady state, but it shows crossover distortion (see Section 3.1).

The spatial derivatives are computed by di�erential pairs. For Ix and Iy the inputs come from left and right (Vpr l

and Vpr r), upper and lower (Vpr u and Vpr d) neighbour, respectively. The current sources feeding the di�erential
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Figure 2. Time course of the motion signals for sinusoid and bar shaped stimuli. The X and Y motion vector
components of one pixel were recorded over time for diagonally oriented stimuli. One period is shown. The dashed
line shows the theoretical expectation.

pairs are biased by the temporal derivative voltages V +

TD and V �

TD , e�ectively making up four-quadrant Gilbert
multipliers. For large spatial derivatives the output of the di�erential pairs saturate like a hyperbolic tangens
function. In e�ect the actual motion vector �eld (ux; uy) computed by the Gradient2d sensor is described by

ux = uo It tanh (� Ix) ; uy = uo It tanh (� Iy) (4)

where uo is a scaling constant and � describes the slope of the tanh function, which is implementation speci�c.

The motion vector components ux and uy are represented as two bidirectional currents Imotx and Imoty which
are separately scanned o� chip. A vertical scanner19 is used for selecting one row of pixels, one of which is picked by
a horizontal scanner. In addition to the motion vectors also the photoreceptor and temporal derivative signals can
be scanned out.

In summary a total of only 31 transistors and 3 capacitors is required for the 2-D motion computation. The
connectivity is easy due to only four bias voltages and the fact that only two communicatingwires are required between
every pair of pixels. Various prototype sensors with 8�8 up to 15�15 pixels have been fabricated with standard
2.0�m and 1.2�m CMOS processes on 2.2�2.2 mm dyes. The pixel size on a 1.2�m process is 112�m�112�m. On
a chip size of 9.4�9.7 mm we expect resolutions of at least 80�80 pixels.

3. EXPERIMENTAL RESULTS

We are now characterising the single pixel output of the Gradient2d sensor pixel array. The Gradient2d sensor
reports motion exactly during the time when motion is perceived, i.e. when a brightness pattern is changing in time.
This is contrary to sample-and-hold type motion sensors, where the motion output is computed and then held �xed
for a certain time. We therefore �rst look at the transient motion output of the Gradient2d sensor. Subsequently
the time-integrated motion output will be used for characterisation.

3.1. TIME-DEPENDENT OUTPUT

In Figure 2 the motion output is shown as a gray value pattern is moved diagonally in front of the sensor. In the
experiment displayed on the left a sinusoid was used. As predicted by Equation 4 the motion output for both X and
Y component resembles a squared sinusoid; the theoretically expected response is the dashed curve. As expected
for diagonally oriented stimuli both vector components are of equal size. It is remarkable how well the output is
recti�ed. Although AC lighting was used for all experiments 
icker noise in the temporal derivative could be avoided
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Figure 3. Velocity dependence of the Gradient2d sensor. To the left the X component, to the right the Y component
of the motion output of one pixel is shown for four di�erent stimulus orientations.

and does not show up in the motion output. The delayed onset after zero output is due to the cross-over distortion
induced by the temporal derivative circuit.

To the right of Figure 2 a black bar on a white background with diagonal orientation was used as stimulus. From
Equation 4 because of the strong temporal derivative at the edges of the bar a peak like output is expected. By
defocusing the sensor lens slightly the motion output can be increased to a �nite dwell time. A small overshoot can
be observed at the bright-to-dark transition (OFF edge) which is caused by the temporal derivative circuit. For both
OFF and ON edges the motion output again correctly reaches the same peak height.

3.2. VELOCITY DEPENDENCE

There are several ways to characterise the transient velocity dependent output of a motion sensor. Since for the
experiments we were using periodic stimuli we chose to measure the average output over several periods, instead
of measuring for example its peak height. Using Equation 4 it can be shown that for periodic stimuli the aver-
age motion output is linear with stimulus velocity. In the experiment a sine wave grating of 72.5% contrast and
0.068 cycles/degree spatial frequency was used. Stimulus velocity is given as on-chip speed.

In Figure 3 experimental results for stimulus velocities up to 76 mm/sec and four di�erent stimulus orientations are
shown; on the left �gure the X component of the motion output of one pixel, on the right �gure the Y component. For
stimulus movement in 45� both X and Y component are positive, for stimulus orientation in 135� the X component
is negative, the Y component is positive, correspondingly for all other orientations. In one �xed orientation the
absolute value of the motion output increases monotonically with increasing stimulus velocity. As can be seen there
is a slight gain mismatch between positive and negative outputs, which is caused by device mismatch in the temporal
derivative and multiplication circuits.

The compressive nonlinearity observed in the motion output stems from the low pass �lter behaviour of the
photoreceptor. For larger stimulus velocities the photoreceptor peak-to-peak output thus decreases and causes the
motion output to increase sub-linear. From a Bode plot a �rst order low pass �lter cuto� frequency of 1=� = 161Hz
has been determined; cf. Figure 4 left. This cuto� frequency can be adjusted by the photoreceptor bias Vprbias. The
observed compressive non-linearity is desired because it increases the velocity range of the motion sensor.

The Gradient2d sensor is sensitive also to a much lower range of stimulus velocities, which can be seen in Figure 4
right. Here the temporal derivative was ampli�ed stronger by adjusting the bias voltages Vp and Vn. Stimulus
velocities below 0.1 mm/sec can unambiguously be detected. Additionally is becomes obvious that the motion
output is now linear with velocity, because in this range the low pass �ltering in the photoreceptors is negligible.
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Figure 4. Left: Bode plot of the photoreceptor response for increasing 
icker frequency. The dashed curve is a �rst
order low pass �lter �t with time constant �=1/161Hz. Right: Motion output for very small stimulus velocities.
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Figure 5. Measured orientation tuning curve for low contrast sine wave grating. The dashed curve represents the
ideal cosine like tuning curve.

3.3. ORIENTATION TUNING CURVE

For a 2-D motion sensor a reasonable orientation tuning curve is crucial. Reasonable means that the motion output
should vary smoothly with stimulus orientation. We have derived in Section 2 that the Gradient2d sensor is to
produce a normal 
ow �eld, i.e. the motion output for both vector components should be cosine-like dependent
on the stimulus orientation. The X component, for example, should approach zero for orientations near 90� and
270�. In an experiment a sine wave grating of 22% contrast and �xed velocity was moved in front of the sensor at
orientations from 0� to 360�. The resulting motion output for both vector components is displayed in Figure 5 as
polar plot. As can be seen the motion output meets the theoretical expectations and forms cosine lobes. For stronger
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Figure 6. Measured orientation tuning curve for high contrast sine wave grating. The theoretical expectation for
saturating spatial derivative is displayed as dashed line.

contrasts the saturation of the spatial derivative, which is described by the hyperbolic tangens term in Equation 4,
becomes important. The e�ect can be observed in Figure 6, where a high-contrast sine wave grating was used. The
X component of the motion output, for example, remains at a high level for orientations even around 45�. Since at
this orientation the Y component also is large, in the resulting motion 
ow �elds an emphasis of diagonally oriented
vectors can be observed; cf. the 
ow �elds in Section 4.

3.4. CONTRAST DEPENDENCE

We have shown earlier how to simplify Equation 2 for the normal velocity �eld in order to make it stable against the
division by zero problem, and to make it suitable for a compact analog VLSI implementation. From the resulting
equation it can easily be seen that the motion vectors are now contrast dependent; for low contrast the motion output
should increase quadratically with stimulus contrast, for high contrasts the increase should be linear.

We have tested experimentally the contrast dependence of the motion output in that we moved sine wave gratings
of contrasts ranging from 2% to 72.5% in front of the sensor, while their spatial frequency was 0.068 cycles/degree
and their velocity was kept at 8 mm/sec. Results for one vector component are shown in Figure 7 left. It can be
seen that for low contrasts the increase of the motion output is �rst quadratic, then continues on linearly.

This dependence of the motion output on the stimulus contrast might exclude the Gradient2d sensor from some
applications. A slow object of high contrast can produce a similar motion output as a faster object of lower contrast.
On the other hand the motion output can now be considered as reliability measure for a local direction of motion
computation. Low contrast objects produce a smaller motion output than high contrast objects and thus signal the
presence of a less reliable motion cue.

3.5. SPATIAL FREQUENCY DEPENDENCE

It has been mentioned earlier that due to the continuous-time operation of the Gradient2d sensor, temporal aliasing
in the motion computation cannot occur. Spatial aliasing, though, can occur in all motion sensors with pixel based
architecture. In the Gradient2d sensor the spatial derivative at one pixel location is computed from the di�erence of
the photoreceptor voltages of the two adjacent pixels. For a sine wave grating of ever higher spatial frequency, for
example, the local spatial derivative is therefore more and more underestimated, until the wavelength equals twice
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Figure 7. Left: Measured contrast dependence of the motion output. For low contrasts the motion output is
quadratically dependent on the stimulus contrast, whereas for high contrasts the dependency is linear. The dashed
line shows the theoretical expectation. Right: Measured spatial frequency dependence of the motion output. The
motion output for sine wave stimuli of equal velocity (5.5 mm/sec), contrast (72.5 %) and orientation is plotted for
spatial frequencies between 0.01 cycles/degree and 1 cycle/degree. The dashed line was computed considering the
discrete spatial derivative and low pass �ltering in the photoreceptors.

the pixel spacing. At this point the computed spatial derivative turns negative. The spatial frequency where aliasing
occurs is called Nyquist frequency kn.

We have experimentally tested this prediction by using sine wave gratings of equal velocity and contrast, but
of spatial frequencies ranging from 0.01 cycle/degree to 1 cycle/degree. In Figure 7 right the motion output is
plotted versus the spatial frequency, which is given in units of the Nyquist frequency. For this particular sensor the
Nyquist frequency was kn = 0:32 cycles/degree. The dashed line represents the theoretical prediction considering the
discreteness of the spatial derivative and low pass �ltering in the photoreceptors. As can be seen the measured data
is well approximated by the theoretical curve. The motion output increases with increasing spatial frequency until
shortly before the aliasing point, where the output crosses zero and reverses sign. At even higher spatial frequencies
a second zero crossing can be observed.

As in the discussion about the contrast dependence it can be argued here that the motion output dependence on
the spatial frequency hampers the use of the Gradient2d sensor. But �rst of all it is obvious that as with any other
pixel based motion sensor spatial aliasing has to be avoided, e.g. by defocusing the lens slightly. Secondly the fact
that the motion output approaches zero for long wavelengths can again be seen as indicator for low local contrast
and a less reliable motion signal.

3.6. DIRECTION SELECTIVITY

For some applications the local direction of motion of very low contrast objects might be of interest. For that reason
we have tested the Gradient2d sensor with a stimulus of only 4 % contrast. In an experiment the 4% stimulus was
moved in front of the sensor in one direction for 4 seconds, then the direction of motion was reversed. The output of
the sensor is of course very small, and relatively noisy, cf. Figure 8 left. But if the output is integrated over a short
time, for example 100 ms, then the direction of motion of the stimulus can unambiguously be determined, as shown
in Figure 8 right. Here a histogram of the motion output, averaged over 100 ms, is shown. Clearly leftward motion
can be distinguished from rightward motion.
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Figure 8. Direction selectivity for 4 % contrast stimulus. Left: Motion output during leftward motion (t <4 sec)
and rightward motion (t >4 sec). Right: Histogram of the 100 ms time averaged motion output.

4. APPLICATION: DETERMINING FOCUS OF EXPANSION

In this section we brie
y present examples of how the Gradient2d sensor can favourably be used for real world tasks.
Consider an application where the focus of expansion (FOE) or the axis of rotation (AOR) of a moving scene is of
interest. Then the X component of the FOE can be computed by �nding the position of the zero crossing (ZC) of
the column average of ux, the X component of the corresponding motion vectors. If there are multiple ZCs, the one
with the maximal slope is to be taken. The FOE Y component and the AOR location are given accordingly:

xFOE = ZCx

 X
y

ux(x; y)

!

xAOR = ZCx

 X
y

uy(x; y)

!
yFOE = ZCy

 X
x

uy(x; y)

!
(5)

yAOR = ZCy

 X
x

ux(x; y)

!
(6)

The Gradient2d sensor can be used not only to compute the motion vector �eld u(x; y) in real time, but also the
row and column averages: The pixel array is addressed by one row and one column scanner, and the motion vector
components are represented as bidirectional currents. Thus by gating out one entire row or column, the vector sum
is obtained automatically. All N row sums and N column sums are read into a computer, where the ZCs and thus
the FOE or AOR is determined. Since only 2N instead of N2 operations are required, where N�N is the array size,
the FOE and AOR can be determined very fast. We achieve frame rates beyond 400Hz. In Figures 9 and 10 we
present snapshots of a 15�15 Gradient2d sensor whose motion output was set to saturate earlier than in Figure 3,
e�ectively computing a direction of motion 
ow �eld. Clearly the motion of the scene is captured by the sensor, and
the row and column averages computed on-chip indicate correctly the axis of rotation and focus of contraction.

5. SUMMARY

In this contribution after a brief review of existing motion sensors we have derived a 2-D motion computation
algorithm that is simply based on a multiplication of temporal and spatial derivatives. We have demonstrated how
this algorithm can very compactly be implemented using analog VLSI technology. Subsequently we have characterised
the single pixel output regarding its time-dependent response, and its mean motion output for stimuli of di�erent
velocities, orientations, contrasts and spatial frequencies. We have argued that the motion output dependence on
contrast and spatial frequency can favourably be used to asses the reliability of the motion cue. The high sensitivity
of the Gradient2d sensor to low contrast objects has been demonstrated. Finally in the last section we have presented
an algorithm for real time computation of the focus of expansion and the axis of rotation of a moving scene using
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Figure 9. Determining the axis of rotation from two di�erent moving scenes. The motion vector �elds as computed
by the sensor, and the visual input as seen by the on-chip CMOS imager are displayed for one instant in time. The
column sum of the Y component and the row sum of the X component of the motion vectors are drawn below the

ow �elds and to their right, respectively. The solid curve was computed on-chip, the dotted curve was computed
from the 
ow �eld external of the sensor for comparison. The axis of rotation for both stimuli is correctly marked
by the zero crossing.
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Figure 10. Left: A receding object was simulated by rotating a spiral in the �eld of view of the sensor. The focus
of contraction is correctly indicated by the zero crossings of the averages. Similarly the focus of expansion can be
determined. Right: Even for an occluded input the correct axis of rotation is determined by the zero crossings.

the pixel-parallel architecture of the Gradient2d sensor. Using a 15�15 pixel array the algorithm was shown to
work reliably. In conclusion we have demonstrated a compact 2-D gradient based motion sensor that due to its easy
handling and robust operation might be used in some industrial applications.
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